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Domain Green’s function Sampling in Diffusion Monte Carlo 

M.H. Kslos 
Lawrence Livermore Nation,al Laboratory Livermore CA 94551-0808 

Abstract 

We discuss the mathematical basis of sampling diffusive paths in Monte 
Carlo using Green’s functions that are themselves built up stochastically from 
Green’s functions in geometrical subdomains. The method of spheres is a 
special case. We show that other subdornains can be used as well, and may 
be more efficient for some applications. We include the basis for construction 
of such subdomain Green’s functions for rectangular domains (in any number 
of dimensions) and cylindrical domains. 

I. INTRODUCTION 

Sampling diffusive paths in complicated geometries has a number of diverse applications. 
It arises in problems of heat conduction which may be treated by Monte Carlo, in the 
diffusion of radiation or chemical species, and in quantum Monte Carlo, especially in the 
computation of hard-sphere systems [I]. While there are rather straightforward approximate 
methods available, we will be concerned with exact and efficient methods that rely on the 
recursive stochastic generation that invoke integrals equations for Green’s functions. 

We consider the diffusion equation with a spatially dependent absorption rate A(g) > 0 
and a source of particles that emits Q(& t) per unit time at time t and position 2 E s2 in 
which the solution p(E, t) is to be found. 

I-0” + A(6) + &(I?, t) = Q@,t). 

Green’s function for this equation is the solution of 

P-1) 

[-V2 + A(@ + ;]G(ri, 2,; t) = 0; I?,& E !a 

G(& &; 0) = S(6 - &). 

G(i@,;t) = 0; R, ii, # R. 
(1.2) 

A formal solution of Eq (1.1) that uses G($ &,; t) is 

~(2, t) = J,a i G(l?, i?; t - t/)&(6’, t’)&‘dt. (1.3) 

If G(g, 6,; t) were known analytically, then Eq (1.3) would permit an analytic solution for 
some forms of Q(6, t). Alternatively, if a method for sampling G(E, I?,; t) can be found, then 
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one may sample a time t’ and a position 6’ from the fun&ion Q(6’, t’) a,nd then, condit,ional 
on those coordinates, sample % and R from G(R, 6’; t - t’). Unfortunately, except for some 
special cases, G is not generally known in interesting geometries. Our procedure can be 
considered as a method for sampling G in a recursive way, so that, the second of the two 
possibilities can be carried through. 

II. RECURSIVE COMPUTATION OF G 

Divide the space Q into two parts, !&, and the complement, s2r so that Q = Ro IJ Rr. 
The boundary of !& is denoted by Z&. A diffusing object (which we will call a ‘Lwalker”) 
that starts at I&, E Z&, must cross d!& if it is to arrive at some position in s2r. We label 
the walkers in two ways distinguishing those that have not yet crossed 800 from those that 
have. The property of “not yet crossed” or “NYC” is lost at the boundary, so that walkers 
labeled NYC a,re absorbed at the boundary (and then reemitted as the other kind of walker 
that can diffuse anywhere including back into St,.) Let G0(6, 60, t) be the distribution of 
the NYC walkers; it satisfies: 

[-V2 + A(6) + $]G"(l?, 6,; t) = 0; 6, I&) E Q,; 

G,(fi, 6,; 0) = h(l? - do); 

Go(fi,i?o;t) = 0; ii, $0 $z 0. 

Integrating Eq (2.1) over Qo and using Green’s theorem, we find that 

J='J 00 

A(E)Go(i?, Go; t)d&t + O" 
0 I.1 aR [-fi ’ -i?Go($ 6,; t)]l?dt = 1. 

0 0 

(2.1) 

(2.2) 

Here, n’ is a unit vector outer normal to 800. 
The first term of the last equation is clearly the net absorption of NYC walkers and the 

second term gives their net leakage across the boundary, ano. Thus we may interpret the 
expression -6 . GGo(&!, &,; t), the outer normal derivative of Go as the current of walkers 
that arrive at the boundary at position R’ and time 1 given that they were born at go at 
time zero. 

Since the NYC walkers do in fact continue to diffuse after reaching the boundary of 00, 
we may correctly regard the leakage current as a source for future diffusion. On that basis, 
and using Eq (1.3) we immediately conclude that 

G(I?, go; t) = Go@, Eo; t) 4- l’l,, G’(g, 2; t - q-6. ?k&(i?, 20; t')@dt' (2.3) 
a 

This equation may also be proved in a more formal way by multiplying Eq (1.2) by 
Go(I?, I?,; t), Eq (2.1) by G(g, &; t) subtracting, integrating, and again using Green’s the- 
orem. 

In fact, solving Eq (2.1) is no easier than solving (1.2) so that the relation in Eq (2.3), 
while correct, is of no practical use. But we may proceed as follows. For every point & in 
0 associate a domain Stk. Let Uk be an upper bound to the function A(g) on !&. That is 
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Now define a new Green’s function in which uk is the absorption rate: 

(2.5) 

As we will see presently, there are useful classes of domains for which Gk(&!, &; t) sat- 
isfying Eq (2.5) can be found analytically, and to sample in the Monte Carlo sense. They 
overestimate the rate of absorption, but that is easy to correct: Walkers are absorbed at 
ii in ok at a rate UkGk(E,iilc;t). If with probability [uk - A(g)]/uk > 0 the walkers are 
reemitted after an artificial absorption at 6, then the true absorption rate is exactly right. 
These reemitted walkers are also source particles for future diffusion so that the full recursion 
for G(g, &; t) is now 

G(6, zi,; t) = G,(h;, &t) + I’ J,!, G(6, I?‘; t - t’)[-6 . k&(2, &; t’)d2df (2.6) 
k 1 + I'S G(%!; 2; t - t') " - "$JG (2 g .f)dj&t' 

kk ,k> .o RI, uk 

This equation may be derived more formally as indicated above for Eq (2.3), and ma.y 
be verified by operating term by term on both sides with 

-a'+@!+; E -02+&+[A(6)-?&]+; (2.7) 

III. RANDOM WALKS AND INTEGRAL EQUATIONS 

We now digress to establish the relationship of random walks and the kind of recursions 
for the Green’s functions that we have developed. 

Let T(X\Y) b e a stochastic kernel. That is, it satisfies 

ww) 2 0 (3.1) 

J T(X)Y)dX < 1 v’y 

and the smallest eigenvalue X0 of T defined by 

satisfies 

x0 > 0 (3.3) 
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Now let a random walk be defined by the scqucnce of st,eps (Y, X1 i X2, . .) chosen as 
follows: 

X1 is sampled from 7’(X11Y) conditional on Y 
X2 is sampled from T(X21X1) conditional on X1 . . . 

X, is sampled from T(X,,,IX,_1) conditional on X,-I 
(3.4 

Define K,,(ZIY) to be the density of arrivals of walkers near 2 after exactly m steps 
starting from Y following 3.4. Then 

K1 (Z, y> = T(-qY) 

&(Z, Y) = JT(ZIX)T(X~Y)dX . . . (3.5) 

A-&-IY) = J.. . J T(ZIX,&7yX,-1 IX&) . . . T(Xl IY)dXl . . dX,-1 

= Km-,(ZIX)T(XIY)dX J (3.6) 
Let K(ZjY) be the the density of arrivals of walkers near 2 after any number of steps. 

It is simply 

But 

or simply 

J K(ZIX)T(XIZ)dX = E K,(ZIY) = K(ZIY) - K*(ZIY), 
2 

(3.8) 

J K(Z(X)T(XIY)dX = -fy K&-IY) 

= &Y) - K1(ZIY); (3.9) 
K(ZIY) = T(ZIY) + J K(ZIX)T(XIY)~X 

That is, the density of arrivals near 2 is the sum of the density in exactly one step (given 
by T(ZIY) = K,(ZIY)) plus the contribution of walks that go from Y to X in one step 
and then frorn X to 2 in any additional number of steps, integrating over the intermediate 
position, X. 

The recursive equation for the diffusive Green’s function, Eq (2.6) has the structure of 
the last equation (noting, however, that its kernel has two parts corresponding to leakage 
across the surface and to absorption.) Thus we may construct a random walk that samples 
G(g, &; t) by a random walk in which -n’. $Gk($, l&; t’) or UkGk@‘, &; t’) are sampled 
for successive positions. 



IV. SAMPLING THE GREEN’S FUNCTION 

The essence of the procedure is that at every stage, the walker is at, some position &. 
We select some subdomain 611, with & E 01, c 62. In general Stl, will be a member of some 
class of domains (spheres, rectangular parallelepipeds. cylindrical annuli, etc.) and we will 
select the largest that fits inside R. Given Qtl;, we construct, G,(E, &; t) and sample it for 
a point of artificial absorption inside RI, or for a point on 3& at which a walker escapes.- 
At each step of the walk, a partial contribution to the full G(d, &; t) is available, namely 
G&it, I?,,; t). W e may use that to evaluate partial contributions to integrals over the full 
solution, or to generate random positions drawn from G(6, go; -t). 

The details of the random walk are outlined below: 

(1) Initialize: 

(4.1) 

(2) Use G,(g,&; t) as contribution t,o G($, 60; t). 
(3) Sample (&+I, tl;+i) from either 

(3.1) ukGk(&+i, &&; tksl - tk) and then 
(3.11) Continue walk with probability 1 - il(&+i)/ljk 
or else 
(3.12) terminate the walk; 

or else sample next (&+i, tk+r) from 
(3.2) -6. ?G,(&+,, l?,; tk+* - tk) on a!&?,; if d,,, E LK? terminate the walk. 

(4) Update indexes and coordinates: 

ktk+l; tk + tk+l; ii, t &+I; flk + flk+l (4.2) 

(5) Repeat from step (2) until walk terminates. 

Eq (2.2) shows that events (3.1) and (3.2) above are mutually exclusive. 

V. USING CARTESIAN PRODUCT SUBDOMAINS 

Use of the ideas presented above are substantially advanced by the use of subdomains 
that are Cartesian products of sets in still lower dimensions. An example is a rectangle, 
1x1 5 C-E 5 34 @ [VI 5 Y F $1 in which the set of points in two dimensions is specified as 
the Cartesian or outer product (@) of two intervals in one dimension. We now consider the 
use of subdomains Qtl, that are such Cartesian products: 

fik = k&k) @w&k) 8. ’ -wi&&) (5.1) 

The intervals are shown as functions of the interior point &. We might use three 
one-dimensional intervals to specify a recta.ngular parallelepiped, or the product of a two- 
dimensional ring by a one-dimensional interval to get a truncated annulus, or the product 
of N three-dimensional spheres to describe a finite volume in a 3N-dimensional space. 



The important point is that the diffusion equation in the form Eq (2.5) is separable. 
That is, if for a lower-dimensiona,l domain LO’~ we can find the necessary Green’s function 
(without absorption): 

The proof follows by straightforward computation using Eq (5.2). 
We also have 

where Vl,gl denotes the outer normal derivative of gl(xl, zol; t)at the boundary of ~1. 
The use of such Green’s functions may best be described in a procedural way: 

(1) Sample 7-0 from the probability distribution function (pfd) uke-uk-ro 
(2) For I = 1,. . . , A4 sample TL from the pdf J8Wl[-V~,g~(~~, n;ol; r)d~l 
(3) Set t = min(-ro, rl,. . . ,7~) 

if t = r0 then new Rk E 021, 
that is, each xj is sampled on the interior of its wj using gj(xj, XQ; t) 

else: new RI, E 821, 
that is, ZI is put on awl, the others on interior points 

of their respective domains wj. 

VI. GREEN’S FUNCTIONS FROM EIGENFUNCTIONS 

A practical way of writing down any of the Green’s functions cited above is to use eigen- 
function expansions. A general approach starts with Green’s function defined in Eq(1.2). 
Consider &(g), normalized eigenfunctions of the operator -V2 + A(@: 

L-V2 + A(@]Sm@) = h#&) (6.1) 

Then we may express Green’s function for the operator -V2 + A(@ + $ as 

G(E, go; t) = c e-xm”q’&?)~,(~o) (6.2) 
m 

Straightforward application of Eq (6.1) and differentiation with respect to t shows that 
it satisfies the first line of Eq 1.2. At t = 0 it reduces to 
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Expansions for the Green’s functions ddinoci in Eq ( 5.2) can often be written in t>erms 
of elementary functions. For example, for a (t,hree-dimensional) sphere of radius a, 

with eigenvslues 

and Green’s function is 

SW) = 2u,(ii,u) g sin(rr~?rr/a)ezp(-m2~“t/u2) 
m-l 

(6.5) 

(6.6) 

Note that the dimensionless function n3g depends only on the dimensionless variables 
u = T/U and T = t/a2. This reduces spheres of all possible radii to one case. 

The expansion of Eq (6.6) converges slowly at small t. There is a complementary ex- 
pansion that is in effect an “image” expansion and that converges rapidly at short time. 
Formally it derives from the Poisson sum rule ( [a], p. 275) and it is 

Green’s function for a one-dimensional interval [zI, z2] is similar. Because it is transla- 
tionally invariant, we need only write it down on some canonical interval, say --a < 2, x0 5 a 
where it takes the form 

Using reduced variables, u = (X - zO)/a; 7 = t/a2 the short-time expansion, correspond- 
ing to Eq (6.7) is 

@I(& x0; q = E 
e-(wk2m)2/(47) 

VL=--co (47r7)1/2 (6.9) 

For cylindrical coordinates, we may consider the interval a 5 T 5 6 for which the basis 
functions are (cf ref [2], p. 206.) 

(6.10) 

where Jo(z) is the Bessel function of the first kind of order zero, and Ye(z) the Bessel function 
of the second kind of order zero. The eigenvalues are A, = c& where a,~ are solutions of 

JO(QmU)Yo(Qmb) - JO(Qhb)YO(QmU) = 0 (6.11) 
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so that the Green’s function we need is 

gc&; 7-o; 1) = 1 e-“%m(r)~m(7-o) 
m 

If O/a - 1 is not, large then 

%&-) = [- b ” u)1’2s”‘“[“““(‘. - a)/(6 ~ a)] 

and 

(6.12) 

(6.13) 

(6.14) 

This can be used very well as the starting point for a rapidly converging iterative solution of 
Eq (6.11). Also, Eq (6.14) means that for most zones, computation with sines and cosines 
can replace use of the Bessel functions. 

VII. SAMPLING THE FUNCTIONS 

We need to consider how to sample new positions and time intervals from gl(~l, rcol; t) and 
J&bd&, xol; t)]d X, respectively. As a basis for experimentation, we prepared robust 
but not optimally efficient routines for the purpose. For the positions in the interior of the 
subdomains, we used rejection techniques based the leading terms of the short and long time 
expansions. For sampling times to boundary absorption, we proceed as follows: Denote 

It follows from Eq(5.2) that 

(7.2) 

(7.3) 

It is straightforward to compute HE(~) (in appropriate dimensionless form) from sort or 
long time series and to tabulate the results in a form straightforward to sample. These 
routines exist in usable form. They have been tested using soluble test problems. They have 
not been tested in the context of radiation transport. The plan is to test the efficiency of the 
calculation when the sphere construction presently used is replaced by rectangular and/or 
cylindrical domains. The expectation is that the better fit of the new shapes now available 
will speed up the calculations. This will be very much application dependent. On the other 
hand, the use of boxes or cylinders is somewhat more expensive, requiring sampling for each 
of the orthogonal directions, and more complicated geometry to orient the subdomain. It 
may be that a speedup will be attained only when the existing routines are made more 
efficient, but there is significant room to do that. 
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Although this term could be made small by choosing AT small enough, we do not do so in order to find 
the “worst, case scenario.” Hence, ignoring I/AT, 

lim ASi < +p/ c,,, 
(cat)+0 

= W$) (G,Z/CY,Z) (So - SL) 
< ($l$) (C,i/C”,L) so CilO) 

Since S: is obtained t a an intermediate point between Se and Si, (Si/Si) < 1. For an ideal gas, 
C”,ilCV,L = 1; hence, AS, < Se. As long as cv,i grows no faster than T3, we still get (S:/Si) (Cy,i/c,,i) < 1 
and the lemma is proved.’ TO summarize, we stress that the condition As, < So is a worst case. Under 

normal conditions, we expect AS, < 0 as desired. 1 

Because the iterates satisfy a discretization of (24), the densities E, and pei satisfy a conservation 

law. It is easy to see what contributes to the radiation energy change, V (,!$+i - Ei), for each iterate in 
each cell. In particular the term, 

AT [K: (5’ - E)]i+l G AT [ Ki ($+I - E,+I) + K: (Si - E,) ($+I - Si)] (41) 

is the energy transferred from the matter. In that light, energy is conserved by setting, 

%+I =ei+AT eo - ei - F (Si+l -%I-[K:tS-E)],,, 
z 

where the coupling term is defined in (41)e If (42) should ever yield e. z+i < 0, we easily recover by using 
the EOS: ei+r = e(Ti+l) where Ti+, = (Si+l/a)“4. 

We conclude the Qtc analysis with two more items. 
,’ 

4.1 Qtc for large At 

Setting the real time step At very large effectively discards the first term on the rhs of (10) and (11). 
In this case, the Qtc iterations are very robust. Equation (28) becomes, 

-‘Di Ei+l + (V/A7 + c~,Ici) Ei+i = (V/AT) Ei + ailCiS% , 

while (29) becomes, 
S zfl = (1 - Ti) Si + Yi Ei+l T 

where cy, and yi are defined as before, but now ai = m c,,i V/AT. Clearly, there is no danger of unphysical 
iterates. 

However, in most applications, even though At may be large, the two terms on the rhs of (11) may 
be comparable, especially if the t,emperatures are cold. For example, for hydrogen, if T is measured in 
keV, e = O.lT while E M S = 0.0137T4. Hence, we should also analyze the effects of only discarding 
&E. In this regime, on the lhs of (28), gi + V/AT + o,Ici while on the rhs the term V Eo is discarded. 
Equation (29) and the definitions (27) are unchanged. The previous analysis holds, but AT might 
be restricted further because on the rhs of (28), which must still be kept positive, we lose the term 
V Eo. Also, the system is less diagonally dominant because gi is smaller. Nevertheless, AT still exerts a 
stabilizing effect on the iterations. 

4.2 Conclusion of Qtc iterations 

In a sense, determining when to stop iterating is trivial. The answer is obtained when Si+i = Si and 
J%+I = Ei. However, in order to have an efficient termination criterion, we focus attention on when the 
matter energy stops changing. First, we compute the maximum energy in a cell, at the ith step 

‘For the Pomraning problem, since c,,, cc T3, (S:/.‘?) (F,, ;/c, ,) = 1. 2 , 
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and stop whenever 

(43) 

where (me)0 is a user-specified reference energy and the pi are user specified parameters. The criterion 
halts t,he iterations if either the relative energy change, or two comparisons of the absolute change are 
small. Suggested values are ~1 = t2 = 0.001 and f3 = 10-s. 

Of course, halting when the matter energy has converged is not the whole story, but typically the 
matter energy is larger than the radiation energy. Nevertheless, if (43) is satisfied at the it” step, the next 
iteration for E,+l is (28) where we explicitly write ‘Di = ‘D(Ei, S,) to show that the diffusion coefficient 
depends on both E, and S,. If we nom assume that Si+i = Si, then ei+l = ei and the previous iteration 
is of the form, 

-D(Ei-l, Si) Ei + gi Ei = (V/AT) Ei-1 + V EO + QilCiSi + (1 - (Yi) m (ee - ei) , (44) 

Subtracting (44) from (28) yields, 

-[ D(Ei, Si) Ei+l - ‘D(Ei-1, Si) Ei] + gi AEi = (V/AT) AEi-i , (45) 

where AEi = E,+l - Ei. The different diffusion coefficients stem from the flux limiter. This difference 
may be ignored since the flux limiter is only a kludge. After dividing by yiyit (45) becomes 

-(l./gi) Q AEi + AEi = lli AEi-i . 
P 

where 0 < hi = (V/Ar)/gi < 1. This is an elliptic equation with homogeneous boundary conditions. 
The rhs is a fraction of what is presumably already a small quantity AE,-i . Hence, AEi is smaller yet 
and the E equation may also be deemed to have converged. 

If by chance we halted prematurely, there is one more control available. If (24) is viewed as a system 
of evolution equations, the coefficients have “characteristic times” that govern how long (in pseudo time) 
it takes to equilibrate. If (24) is divided by the cell volume V, the units are energy-density/pseudo-time. 
If T is the approximate time to equilibrate, then from the e equation and the absorption term, e/r M -e 
which yields r M 1. Similarly, from the coupling term, 

me/r M KS = cAtrnnS 

which yields, 
-J E e/(cAtKS) 

as another estimate for how long (in pseudo time) to iterate. 

5 Pomraning Probiem 

We now present results on the Pomraning problem, [2] and [3], which simulates a radiation wave prop- 
agating into cold material. After some algebra, for this problem, the equations may be put in the 
form, 

aE/8t = V.DVE + (l/c) (S - E) (46) 
de/i% = -(l/c) (S - E) (47) 

where D = l/(36), e = S/E, and S = a T4. The term E is a constant which arises by using cv = cy,oT3 
and setting E = 4a/c,,o. In (46)-(47), K = p = 1. Hence, e = pe is now the internal energy density. The 
normalized time t = E c K t. 

The specifications of the Pomraning problem dictate S 5 E. Since (46)-(47) imply that E is an 
approximate time for the fields to equilibrate, it is interesting to examine what happens at early times 
using the backward Euler (0 = l), semi-implicit scheme described in $2. Table 1 displays the energy 
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-1.6e-3 9.4e-10 2.5e-12 6.le-15 

~~ 

Table 1: Energy exchange term Ei - Si for the Pomraning problem. First and second columns denote 
the initial time step and current time resp. Simulation uses c = 0.1 

exchange term E3 - 5’j where j denotes the mesh index. A nonuniform mesh is used; Aze = 0.01, and 
for j > 0, Azj = AZO (1.05)j. The table shows that for A& = 10p8, at the incident edge, SO > Eo 
violating the physics. For larger A&,, the result is even worse, e.g., if A& = 10p6, after one cycle, 
E. - So = -1.2. 1015 

We note that the above error does not occur for the proposed Qtc scheme. However, the lack of the 
error is not due to the introduction of the pseudo-temporal derivative, but is instead due to iterating on 
S instead of T. Indeed, since the opacity K is constant, for the first iteration, the pseudo-time step AT 
is not restricted; hence, l/Ar = 0. Equation (34) still holds and for the first time step of the Pomraning 
problem, it reduces to, 

Sl = yoG 70 = l/(1 + cuoKo/V) , 

where the subscripts now denote the itera$on number and where cue = l/(1 + cAtr;c) = l/(1 + Ai). This 
is the desired behavior; viz., Sr < El with equality obtained only as Ai -+ co. 

Iterating on S (instead of T) is the cause of the good fortune. Substituting AT = AS/S; into (8) 
yields / 

rm 
At--too 

and we obtain S = E as desired11 

AT = Al,i,moo AS/$ = (E - 5’0)/$, , 

The analysis is easily extended to other problems with more general material properties, e.g., c, = 
c,,eTo and K = KoT~. The moral is that since S cx T4, it is better to solve for (and iterate on) what 
varies rapidly (S), then take its fourth root (to get T) instead of using T and then taking its fourth 
power. 

6 Conclusion 

We have developed a scheme to solve the nonlinear system of equations describing radiation diffusion 
coupled to matter energy balance. Because of the nonlinearities, iterations are required. After multi- 
plying by the time step At, the e’quations mimic a coupled system with transport, explicit sources and 
absorption. By introducing @tc, the system is solved when the (pseudo-time) steady state is reached. 
Each iteration is a temporal advance in pseudo-time and requires only one solve of a scalar elliptic equa- 
tion. The scheme is robust; by controlling the pseudo-time step AT, each iterate is guaranteed to be 
positive and bounded by the previous iterate and the boundary conditions. The solution is first order 
accurate in (real) time. Arbitrarily large At’s are allowed. Upon convergence, all of the coefficients are 
evaluated at the advanced time level. 

Acknowledgement Several results in this paper stem from useful discussions with Dr. J. Bolstad 
of LLNL. 
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